Optimal Spring Probe Solutions for Every Application

Valts Treibergs Johnstech International

Mesa, Arizona • March 3–6, 2024

Agenda

- Background
- Testing Application Challenges Overview
- Electrical Challenges
 - Existing predominant solutions available
- Next Generation HF testing solution using the HF Spring Probe family
 - Internal electrical and mechanical qualification
 - RF Applications and field performance
- Mechanically challenging applications
 - Introduction to the robust 'bread and butter' HC solution

Application Challenge – Electrical or Mechanical? (or both?)

- Electrical challenges:
 - High data rate digital
 - High frequency
 - High power
- Mechanical challenges
 - Large package(s) planarity
 - Multi-site testing
 - Overcome large stack-up tolerances
 - Old handlers & kits very loose tolerances – imprecise DUT presentation
 - Thermal control

• PAM-4

- 5/6 G
- RADAR
- Amplifiers
- Filters

- Low Inductance
- Matched Impedance
- Low Insertion Loss
- Low Return Loss
- Big BGA modules
- Package warp
- Worn out kits
- Strip test

Electrical Challenges & Existing Solutions

- Maximize data rate or frequency response how?
 - 1. Low inductance with short test height
 - 2. Matched impedance to the test environment
- Z-axis Conductive Elastomers
 - Very short signal path:
 - Low inductance
 - Good S₁₁, S₂₂
- Coaxial or coplanar waveguide
 - Good impedance match
 - Good isolation
- Short spring probes
 - Low inductance

Test**ConX**

Optimal Spring Probe Solutions for Every Application

Electrical Challenges – Elastomer Solutions & Limitations

- Benefits:
 - Very short signal path (low inductance)
- Problems:
 - Less compliance
 - Performance at hot/cold temperatures
 - High force to DUT possible damage
 - Variable contact resistance conductive particle contact variability
 - No preload to PCB

Electrical Challenges – Impedance Controlled Solutions & Limitations 60

Coaxial

- Complex structure maintenance - insulators
- Center signal conductors very small for DUT pitch – low force/high Cres/low CCC
- Coplanar Structures

Test**ConX**

- Accessible to outer perimeter of DUT only
- Required mixed technologies (spring probes, etc.)

 $Z_0 = \frac{50}{\sqrt{\epsilon_r}} \ln \frac{D_2}{D_1}$ $\frac{50\Omega \text{ Example}}{\text{DUT Pitch: 0.5mm}}$ D2=0.45mm

 ϵ_r =2.1 (Teflon)

D1=0.134mm

Smiths Vinway Unsulators Conductive housing

Optimal Spring Probe Solutions for Every Application

Electrical Challenges – Short Spring Probe Solutions & Limitations

- Available from quite many suppliers
- All of different designs and test heights
- Limited pitch variations from any given supplier
- Spring material may limit temperature performance
 - Music wire limited to 120°C

Test**ConX**®

Electrical Challenges — Solution Opportunity

- Compliance:
 - Maximize 0.300mm or more
 - Predictable and reliable spring force
 - PCB preload eliminate PCB wear
- Operating Temperature
 - Want consistent force and Cres at -65° to +175° C
- RF performance
 - Low inductance
 - Good S₁₁, S₂₂ response

Test**ConX**®

• Simple contactor maintenance

The Solution: HF Probe Family

- 4 Pitches: 0.3, 0.4, 0.5, 0.8mm
- Standardized 1.0mm Test Height
- 0.30-0.35 probe compliance
- Pd Alloy radial DUT plunger Designed for maximum RF

J-Tuning

configurability:

HF Family Solution

- Contactor construction
 - Standard CNC machined housing components for quick fabrication – no special tooling required
 - BGA / LGA / QFN any configuration
 - Spear or crown tip probe option available
- Probe
 - Individually user replaceable
 - Cleanable Pd alloy inline or manual cleaning
 - Patent-pending innovative probe architecture
- True configurability
 - Socket design improved with optimal probe size for application *J-tunedTM*
 - Optimize for RF performance (match impedance)
 - Optimize for power use largest pin
 - Optimize for signal isolation

0.3

0.4

9

0.5 0.8 mm

HF Probe Performance – In-house Qualification

Qualification regimen – done for each probe configuration:

- Life cycle testing to 1M insertions
 - FDR testing periodically
 - Cres repeatability
- Life cycle testing at 175°C to 500K insertions
 - FDR testing periodically
 - Cres repeatability
- CCC T-Rise
- RF testing GSG
 - HFSS model correlation

10

Optimal Spring Probe Solutions for Every Application

RF Qualification

Vector Network Analyzer Measurement

- Keysight 67GHz N5227B
 PNA
- Direct probing using CPW microwave probes
- Measurement correlation to HFSS models
 - All probe configurations
 - Certifies that simulation will be accurate

mmWave Transceiver Application

- 0.65mm FC-CSP package
- HFSS Modeling:
 - 4x3 Probe matrix
 - Tx and Rx Differential RF signals deep in BGA array
 - DC-67 GHz sweep
- Goal:
 - Differential Insertion loss <1 dB or better @67 GHz
 - Differential Return loss better than -10 dB @67 GHz
 - Find optimal HF probe configuration

Optimal Spring Probe Solutions for Every Application

RF Switch Application

- Variable pitch WLCSP package
- HFSS Simulation:
 - Variable pitch bump (.38mm min)
 - Internal RF_{in} and RF_{out} ports
 - DC-26 GHz sweep
- Goal:
 - Single-ended GSG insertion loss
 <1dB
 - Single-ended return loss better than -10 dB @30 GHz
 - Good isolation between RF_{in} and RF_{out}

Optimal Spring Probe Solutions for Every Application

G

Ri

Ro

Optical DSP Transceiver Application

- Large 800 ball+ 0.5mm FCBGA package
- HFSS Modeling:
 - Tx and Rx 100 Ω differential embedded in BGA array
 - 30GHz and 65GHz bandwidth signals
 - DC-100 GHz sweep
- Mechanical FEA Modeling:
 - Full design mechanical simulation housing deflection
- Goals:
 - Differential Insertion loss <1 dB or better @30&65 GHz
 - Differential Return loss better than -10 dB @ 30&65 GHz
 - Find optimal HF probe configuration
 - Verify BGA array will not deflect housing beyond probe preload capabilities

Optical DSP Transceiver Application

- Outgoing Measurements:
 - Probe Cres
 - Probe Force
 - Socket Probe Planarity
- Customer RF Performance
 - Digital 800G/16-QAM loopback test vs POR elastomer socket

Test**ConX**

FCR output H

FCR output H

Measured

Planarity:

18um

Optimal Spring Probe Solutions for Every Application

distribution

Mechanical Challenges – Limitations

- The vast majority of applications do not need 60+ GHz performance
 - 30 GHz is adequate
 - Run very high volumes and have world-wide established test cell infrastructure
- Most existing spring probe solutions
 - Different compressed test heights of every probe limits the selection
 - Spring materials used limit testing below 155°C
 - Old designs use barrel and plunger fits that do not provide good biasing
 - Do not provide a wide operating window

Test**ConX**®

Mechanical Challenges & Existing Solutions

- Maximize mechanical compliance to overcome handler and package shortcomings
 - Package specs planarity/ball size/thickness
 - Handler stack-up kit tuned to optimally compress DUT?
- Many spring probes to choose from many suppliers:
 - Double-ended
 - Single-ended
 - Many are temperature range is limited due to material choice (music wire)
- Way too long: poor electrical performance
 - 5.05mm? 7mm? 3.2mm? More? Many are legacy designs

Mechanical Challenges – Opportunities

•

•

- Compliance:
 - Maximize provide best in class
 - Wide operating range to maximize yields
- Operating Temperature
 - Want consistent force and Cres at -65° to +175° C
- RF performance
 - Still plenty of RF margin –
 Measured probe performance to 30 GHz
 - < 1nH inductance</p>
- Simple maintenance

The Solution: HC Probe Family

- 4 Pitches: 0.3, 0.4, 0.5,
 0.8mm
- Standard 2.5mm Test Height
 - 0.65-0.75mm probe
 compliance most
 compliance & spring force per
 test height
- Pd Alloy DUT plunger
 - Stainless steel alloy spring for +175°C performance
- Also designed for maximum RF configurability and *J*tuningTM

Everyday HC Solution

- The HC spring probe family:
 - Uses same patent-pending architecture as HF
 - Up to 0.750 mm total probe compliance
 - Allows for an extreme range of test robustness
 - 2.5mm testing height
 - 175°C
 - Same RF configurability
- MORE TO COME.....

Test**ConX**

Cres (mΩ)

Summary

- For 'bleeding-edge' electrical challenges
 - Standardized 1mm short compressed height spring probes (HF)
 - Provide low inductance maximize RF signal performance
 - Are flexible for optimal RF configurations
 - Provide the best mechanical compliance at 1mm TH
- For 'bleeding-edge' mechanical challenges
 - Standardized 2.5mm compressed height spring probes (HC)
 - Best in class compliance to accommodate mechanical stack-ups
 - Yet offer good RF performance and configurability

